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Abstract. One may obtain, using operator transformations, algebraic relations between the
Fourier transforms of the causal propagators of different exactly solvable potentials. These
relations are derived for the shape invariant potentials. Also, potentials related by real
transformation functions are shown to have the same spectrum generating algebra with Hermitian
generators related by this operator transformation.

1. Introduction

The study of exactly solvable potentials, for which the quantum mechanical eigenfunctions
may be expressed in terms of hypergeometric functions, has a long and varied history. One
approach is an algebraic solution of the problem. Early work by Infeld and Hull classified
factorizations of the Schrödinger operator for solvable potentials which then allow one to
generate other solutions to the problem [1]. A related technique, supersymmetric quantum
mechanics, discovered as a limiting case (d = 1) of supersymmetric field theory, was
introduced by Witten and later developed by other authors [2]. In particular, Gendenshtein
gave a criteria, shape invariance, which when satisfied insures that the complete spectrum of
the supersymmetric Hamiltonian may be found [3]. Finally, spectrum generating algebras,
whose use dates back to Pauli’s work on the hydrogen atom, have been studied more recently
as a method to find the spectrum and eigenstates of solvable potentials [4, 5].

Another method to find the energy eigenvalues and wavefunctions of a solvable potential
is to use an operator transformation, essentially a change of independent and dependent
variables, to relate it to a Schrödinger equation for a potential whose solutions are known.
Duru and Kleinert described such a method for transforming the resolvant operator, whose
matrix element is the propagator [6]. They used this technique to transform the time-sliced
form of a path integral into a known path integral, such as that for the harmonic oscillator,
by transforming both the space and time variables in the path integral expression.

However, we will take a different approach than most previous papers and study these
transformations outside the context of path integrals. We will show that the operator
transformations allow one to find algebraic relations between the Fourier transform of the
propagators for two different quantum systems. We also calculate these relations for a
number of systems with exactly solvable potentials. Although most of these Duru–Kleinert
transformations have been used to solve various path integrals, the transformations for the
Rosen–Morse II and Eckart potentials are presented here for the first time [6, 7]. We also
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show that two quantum systems which may be mapped to one another by real Duru–Kleinert
transformations have the same formulation in terms of the enveloping algebra of the same
Lie group. This explicit connection between the operator transformation approach, and
the spectrum generating algebra approach, to exactly solvable quantum systems, although
intuitively reasonable, has not been noted in the literature and allows one to unify previous
results using these two different methods.

In the first section we describe the operator transformations with special attention to how
the measure for the normalization of states transforms. We next illustrate the method with
a derivation of the relation between the propagators for the trigonometric Poschl–Teller and
Rosen–Morse potentials and give the relations for the propagators for some other exactly
solvable potentials. Finally, we examine the corresponding transformation of the Lie group
generators.

2. Operator transformations and causal Green functions

We will consider transformations of the Fourier transform of the causal propagator for a
quantum mechanical system. Hereafter operators will be denoted by a caret. The propagator
is given by

K(x0, xf , t) ≡ θ(t)〈xf |e−(i/h̄)Ĥt |x0〉 (1)

and its Fourier transform is defined by

G(x0, xf , E) ≡ i
∫ ∞
−∞

dte(i/h̄)EtK(x0, xf , t)

= i
∫ ∞

0
dt〈xf |e−(i/h̄)(Ĥ−E)t |x0〉

=
〈
xf

∣∣∣∣ h̄

Ĥ− E − iε

∣∣∣∣ x0

〉
(2)

where the infinitesimal imaginary constant in the last line gives the causal propagator.
Duru and Kleinert realized that (2) is invariant under two types of operator

transformations. One type is simply a point canonical transformation, which for a one-
dimensional system is

x̂ → f (x̂) p̂→ 1

f ′(x̂)
p̂ (3)

with x̂, p̂ the canonical position and momentum, respectively. This point canonical
transformation may be implemented by a similarity transformation on the operators, which
is also called a quantum canonical transformation, since if it is applied to all operators it
preserves the canonical commutation relations [8]. Under such a similarity transformation

Ĥ− E→ Ô(Ĥ− E)Ô−1 (4)

〈x| → 〈x|Ô−1. (5)

The operatorÔ which implements the transformation is composed of the canonical position
and momentum operators. We will assume thatÔ is invertible although, with proper
care, operators with a non-zero kernel may also be considered [8]. Clearly, this type of
transformation leaves invariant any matrix element of an operator.

Another type of transformation which leaves (3) invariant is what Duru and
Kleinert denoted as anf -transformation. We will distinguish between two types of
f -transformations, since the normalization measure transforms differently in each case. The
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first type off -transformation is a similarity transformation witĥO = f (x̂), wheref (q) is
some function ofq. The other type of transformation, which we will call conjugation, is

Ĥ− E→ f (x̂)(Ĥ− E)f (x̂) (6)

〈x| → 〈x|f (x̂). (7)

Equation (3) is invariant under this transformation; however, a general matrix element of
an operator is not invariant.

We next examine the change in the measure factor for these transformations. First
consider a similarity transformation (5). The original wavefunctionψ(r) and the
transformed wavefunctionψ ′(r) are defined as

ψ(r) = 〈r|ψ〉 (8)

ψ ′(r) = 〈r|Ô|ψ〉 (9)

with 〈r| an eigenstate of the position operator with eigenvaluer. We then may find the
transformation of the (in general operator valued) measure factorµ̂.

〈ψ |ψ〉µ̂ =
∫

dr〈ψ |µ̂|r〉〈r|ψ〉

=
∫

dr〈ψ |µ̂Ô−1|r〉〈r|Ô|ψ〉

=
∫

dr〈ψ |Ô†(Ô−1)†µ̂Ô−1|r〉〈r|Ô|ψ〉

=
∫

dr〈ψ |Ô†µ̂′|r〉〈r|Ô|ψ〉
= 〈ψ ′|ψ ′〉µ̂′ . (10)

Therefore, the measure factor for the transformed wavefunctions isµ̂′ = (Ô−1)†µ̂Ô−1.
We next assume that the measure factor contains only the position operator, i.e.

µ̂ = g(x̂). Without ambiguity we may then use the notationg(r) for the measure factor.
For a point canonical transformation (4), the measure transforms as a differential

g(r)→ g(f (r))
df (r)

dr
. (11)

For the similarity transformation withÔ = f (x̂) the measure factor transforms
multiplicatively as

g(r)→ f −2(r)g(r). (12)

Finally, the measure factor remains unchanged for the conjugation transformation of (7).

3. Example: Rosen–Morse to Poschl–Teller potential

The transformation from a Hamiltonian with potentialV0(r)

Ĥ = p̂2

2µ
+ V0(x̂) (13)

to another with potentialVf (r) is specified by a single functionf (r). We will illustrate
the general sequence of transformations along with the specific example withV0(r) the
Rosen–Morse I potential andVf (r) the hyperbolic Poschl–Teller potential.
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First a point canonical transform is performed as in (4). For the example, the function
is f (r) = (1/a) arctanh cos 2ar, giving the operator transformation

x̂ → Ô0x̂Ô−1
0 =

1

a
arctanh cos 2ax̂ p̂→ Ô0p̂Ô−1

0 = −
1

2
(sin 2ax̂)p̂ (14)

which transforms the original operator,Ŝ0 ≡ Ĥ0− E
Ŝ0 = 1

µ
p̂2+ A csch2 ax̂ + B cothax cschax − E (15)

into

Ŝ1 ≡ Ô0Ŝ0Ô−1
0 =

1

8µ
(sin2 2ax̂p̂2− 2aih̄ sin 2ax̂ cos 2axp̂)+A cos 2ax̂ − B sin2 2ax̂ − E.

(16)

According to (11) the measure transforms as

dx → −2

sin 2ax̂
dx. (17)

The propagator becomes

GR–M(xf , x0, E) = i
∫

dT 〈xf |e−(i/h̄)Ŝ0T |x0〉 (18)

= i
∫

dT 〈xf |Ô−1
0 e−(i/h̄)Ŝ0T (Ô−1)†|x0〉 (19)

= i
∫

dT

〈
1

2a
arccos(tanhaxf )

∣∣∣e−(i/h̄)Ŝ1T
∣∣∣ 1

2a
arccos(tanhax0)

〉
.

Next one performs the similarity transformation witĥO1 = (df (r)/dr)
1
2 = sin−

1
2 2ax̂ to

get

Ŝ2 ≡ Ô1Ŝ1Ô−1
1 =

1

8µ
sin2 2ax̂p̂ − ih̄a

2µ
sin 2ax̂ cos 2ax̂p̂ + 2h̄2a2

8µ
sin2 2ax̂

+A cos 2ax̂ − B sin2 2ax̂ − h̄
2a2

8µ
− E. (20)

The measure transforms as
−2

sin 2ax̂
dx →−2 dx (21)

and the propagator is then

GR–M(xf , x0, E) = i
∫

dT

〈
1

2a
arccos(tanhaxf )

∣∣∣∣Ô−1 e−(i/h̄)Ŝ2T (Ô−1)†
∣∣∣∣ 1

2a
arccos(tanhax0)

〉
= i(sech

1
2 axf )(sech

1
2 ax0)

∫
dT

〈
1

2a
arccos(tanhaxf )

∣∣∣∣
×e−(i/h̄)Ŝ2T

∣∣∣∣ 1

2a
arccos(tanhax0)

〉
. (22)

Next a conjugation transformation follows (7), with the functionC(df (r)/dr). The
constantC is chosen to give the correct kinetic energy factor in the Hamiltonian.

Ŝ3 ≡ 2

sin 2ax̂
Ŝ2

2

sin 2ax̂
= 1

2µ
p̂2+

(
A− E − h̄

2a2

8µ

)
csc2 2ax̂

+
(
−A− E − h̄

2a2

8µ

)
sec2 2ax̂ − 1

2
h̄2a2− 4B. (23)
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The transformed propagator is

GR–M(xf , x0, E) = i(sech
1
2 axf )(sech

1
2 ax0)

∫
dT

〈
1

2a
arccos(tanhaxf )

(
2

sin 2ax̂

)
×e−(i/h̄)Ŝ3T

(
2

sin 2ax̂

)
1

2a
arccos(tanhax0)

〉
= 4i(cosh

1
2 axf (cosh

1
2 ax0)

×
∫

dT

〈
1

2a
arccos(tanhaxf )

∣∣∣∣ e−(i/h̄)Ŝ3T

∣∣∣∣ 1

2a
arccos(tanhaxf )

〉
. (24)

Finally the the Hilbert space is rescaled so that the measure becomes the usual one,µ = dx,
norm〈x| ≡

√
2〈x|. (25)

This introduces a factor of12 in the propagator (25). The final result is then obtained

from (25) by matching parameters in the operatorŜ3 with those for the Poschl–Teller
potential. The algebraic relations between the Fourier transform of the propagator for
several solvable potentials are shown in table 1 along with the functionf (r) used for the
operator transformation†. Although all of the potentials for which we give explicit results in
table 1 are shape invariant, the operator transformations are valid for a general potential. It
is interesting to note that although not all one-dimensional solvable potentials, classified by
Natanzon, are shape invariant, they are related to a shape invariant potential by an operator
transformation [10, 11].

4. Operator transformations for Lie group generators

The operator transformations from̂S0 ≡ Ĥ0−E0 to Ŝf ≡ Ĥf −Ef may be summarized by

Ŝf = C(f ′) 3
2 Ô0Ŝ0Ô−1

0 (f ′)
1
2 . (26)

Ô0 is the operator implementing the point canonical transformation (4), with functionf (q)

and C is a constant. Since the eigenvalue equation,Ŝf = 0, is homogeneous one may
multiply (26) byC−1(f ′)−2 on the left to obtain the following equation, valid for an interval
in which f ′ 6= 0 and finite,

(f ′)−
1
2 Ô0Ŝ0Ô−1

0 (f ′)
1
2 = 0. (27)

The operator transformation between the eigenvalue equation for the HamiltonianĤ0 and
Ĥf now preserves the commutators of operators on the two Hilbert spaces, for example, it is
a Lie algebra isomorphism. The new generatorsT̂ if are related to the Lie algebra generators

for the original potential,T̂ i0 , as

T̂ if = (f ′)−
1
2 Ô0T̂

i
0Ô−1

0 (f ′)
1
2 . (28)

Therefore, in the cases where the eigenvalue equation forĤ0 may be written as an element
of the enveloping algebra of a particular Lie algebra, the transformed eigenvalue equation,
(27), has the same formulation in terms of Lie group generators, however in a different
representation. The eigenvalue equation for the potentials listed in table 1 then have the
same Lie algebraic form as either the radial harmonic oscillator, the trigonometric Poschl–
Teller, or the hyperbolic Poschl–Teller potential.SU(1, 1) generators for the radial harmonic

† The transformation functions given in table 1 are also listed in [9]; however, we correct them for the Rosen–
Morse II and Eckart potentials.
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oscillator Schr̈odinger operator and those related to it by (28) are well known and given in
[12].

As an example, we consider the Lie algebraic form for the trigonometric Poschl–Teller
potential and then find the transformed generators for the Rosen–Morse I potential. The
Poschl–Teller potential is known to have an algebraic formulation in terms of the Lie group
SU(2)⊗ SU(2). One may find the generators forSO(4) = SU(2)⊗ SU(2) by considering
the generators of rotations inR4

J1 = i

2
(−x1∂4+ x2∂3− x3∂2+ x4∂1)

J2 = i

2
(−x1∂3− x2∂4+ x3∂1+ x4∂2)

J3 = i

2
(−x1∂2+ x2∂1+ x3∂4− x4∂3)

K1 = i

2
(−x1∂2+ x2∂1− x3∂4+ x4∂3)

K2 = i

2
(x1∂3− x2∂4− x3∂1+ x4∂2)

K3 = i

2
(x1∂4+ x2∂3− x3∂2− x4∂1). (29)

Changing to Euler angle coordinates for the double cover ofS3,

x1 = cos

(
θ

2

)
cos

(
φ + ψ

2

)
x2 = cos

(
θ

2

)
sin

(
φ + ψ

2

)
x3 = sin

(
θ

2

)
cos

(
φ − ψ

2

)
x4 = sin

(
θ

2

)
sin

(
φ − ψ

2

)
(30)

and scalingθ → 2aθ we obtain the generators

J1 = i

(
1

2a
sinψ∂θ − csc 2aθ cosψ∂φ + cot 2aθ cosψ∂ψ

)
J2 = i

(
− 1

2a
cosψ∂θ − csc 2aθ sinψ∂φ + cot 2aθ sinψ∂ψ

)
J3 = −i∂ψ

K1 = i

(
1

2a
sinφ∂θ + cot 2aθ cosφ∂φ − csc 2aθ cosφ∂ψ

)
K2 = i

(
− 1

2a
cosφ∂θ + cot 2aθ sinφ∂φ − csc 2aθ sinφ∂ψ

)
K3 = −i∂φ. (31)

These obey the commutation relations

[Jl, Jm] = iεlmnJn
[Kl,Km] = iεlmnKn
[Jl,Km] = 0 (32)
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andJi is obtained fromKi by interchangingφ ↔ ψ . These operators are similar to those
found in [13], which were deduced from the corresponding Infeld–Hull factorization. The
Casimir operatorJ 2 is

4a2J 2 = −∂2
θ + a2(−∂2

φ − ∂2
ψ + 2∂φ∂ψ − 1

4) csc2 aθ

+a2(−∂2
φ − ∂2

ψ − 2∂φ∂ψ − 1
4) sec2 aθ − a2. (33)

The other Casimir operatorK2 is identical. One may express the eigenfunction equation
for a unitary representation of the groupSU(2) as

J 2|klm〉 = k(k + 1)|klm〉 k = 0, 1
2, 1, 3

2, . . .

J3|klm〉 = m|klm〉 m = −k, . . . ,0, . . . , k. (34)

If one chooses the eigenfunction|klm〉 = ukmn(θ) ei(lφ+mψ) then (34) becomes

2a2

µ
J 2uklm(θ) =

[
− 1

2µ
∂2
θ +

a2

2µ

(
(l −m)2− 1

4

)
csc2 aθ

+ a
2

2µ

(
(l +m)2− 1

4

)
sec2 aθ − a2

2µ

]
uklm(aθ) =

2a2

µ
k(k + 1)uklm(θ). (35)

This is the Schr̈odinger equation for the Poschl–Teller potential, which if we define the
coefficients in the potentialA ≡ h̄2γ (γ − 1) andB ≡ h̄2δ(δ − 1), givesγ = l − m + 1

2,
δ = l+m+ 1

2 andEk = (2a2h̄2/µ)(k+ 1
2)

2. Sincem = k− j, j = 0, 1, . . . ,2k the energy
eigenvalues are

Ek = a2h̄2

2µ
(γ + δ + 2j)2 (36)

with j > 1
2(1− γ − δ). The same procedure for theKi operators gives the same energy

eigenvalues.
If one transforms theSU(2) generatorsJi , in (31), into the corresponding ones for the

Rosen–Morse I potential, using (28), one obtains

JR–M
1 = i

(−1

a
coshaθ sinψ∂θ − coshaθ cosψ∂φ + sinhaθ cosψ∂ψ

)
JR–M

2 = i

(
1

a
coshaθ cosψ∂θ − coshaθ sinψ∂φ + sinhaθ sinψ∂ψ

)
JR–M

3 = −i∂ψ . (37)

The Casimir operator acting on the state|klm〉 ≡ uklm(θ) ei(lφ−mψ) gives

J 2uklm(θ) =
[−cosh2 aθ

a
∂2
θ + (l2+m2) cosh2 aθ + 2lm sinhaθ coshaθ

]
uklm(θ)

= k(k + 1)uklm(θ) (38)

andJR–M
3 |klm〉 = −m|klm〉. Multiplying by −a2h̄2 sech2 aθ/2µ leads to the Schrödinger

equation for the Rosen–Morse potential

h̄2

[
− 1

2µ
∂2
θ +

a2lm

µ
tanhaθ − a

2k(k + 1)

2µ
sech2 aθ

]
uklm(θ) = −

a2h̄2(l2+m2)

2µ
uklm(θ) (39)

with parametersA = a2lm/µ and B = a2k(k + 1)/2µ and energy eigenvalueE =
−a2h̄2(l2 + m2)/2µ. Since the energy eigenvalues are non-positive only the bound-
state energies may be found. Again for a unitary representation ofSU(2) we have
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−m = −k+j, j = 0, 1, . . . ,2k. Substituting this in the equation for the energy eigenvalue
and expressing the result in terms of the potential coefficients

Ej = −h̄2

[
µA2

2a2

(
1

n2

)
+ a2

2µ
n2

]
n = −1

2
+ 1

2

√
1+ 8µB

a2
− j j = 0, 1, . . . ,

(
− 1+

√
1+ 8µB

a2

)
. (40)

Furthermore, we may assume thatA > 0, since under the change of variablesθ → −θ ,
A→ −A. Similar to the Poschl–Teller case, the otherSU(2) operatorsKi may be found
from Ji by exchangingφ ↔ ψ and furthermore the Casimirs are equal,K2 = J 2. Therefore,
with K3|klm〉 = l|klm〉 the range of the eigenvalue isl = −k,−k+1, . . . , k−1, k and one
finds the following bound on the coefficients in the potential in order for the existence of a
bound state (

µA

a2

)1
2

= lm 6 k2 =
(
− 1

2
+ 1

2

√
1+ 8µB

a2

)2

. (41)

5. Conclusion

We have shown that if a particular type of operator transformation, which is not necessarily
unitary, exists between two Schrödinger operators there is a procedure for finding an
algebraic relation between the respective propagators and that the two eigenvalue problems
have the same formulation in terms of Lie group generators. Also a knowledge of the
Fourier transform of the propagator for the new potential allows one, in principle, to find
the energy eigenvalues and wavefunctions for both the bound and scattering states. One
interesting generalization of this procedure would be to find such operator transformations
between multiparticle exactly solvable systems, such as those of the Calogero–Sutherland
type.
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